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Abstract—In the present paper. the eigenstrain formulation is developed for classical plates. By
employing this approach, Green's function of an isotropic plate is obtained in closed form. The
solution for a plate with semi-infinite hinge is derived. which shows a 1/r singularity near the tip of
the hinge. The Eshelby-tvpe problem. an elliptic inclusion with uniform eigenstrain, is studied and
the result has the same features as that of the Eshelby solution for ellipsoidal inclusion in three-
dimensional clasticity, .e.. the general stress M, and strain w,, are uniform inside the inclusion.
By using the equivalent inclusion method outlined in this paper, an elliptic inhomogeneity which
has different material properties from the matrix can be made equivalent to an elliptic inclusion
with appropriate uniform cigenstrain, and can therefore be solved readily.

(. INTRODUCTION

Eigenstrain is a generic name of all kinds of inclastic strains, which was originally called
transformation strain by Eshelby. Eigenstrain formulation has been widely used in three-
dimensional and two-dimensional plane strain problems (sce Mura, 1982). Many interesting
results were obtained via this approach, which greatly bencfitted the studies of mic-
romechanics. However, there is no parallel formalation in thin plate theory, which is one
of the most important configurations in applied mechanics. It has been noticed that thin
pliates with some microstructures become an attractive option in engincering applications.
Two well known examples are perforated plates in heat transfer and honcycomb plates in
aerospace structures,

In the present paper, the eigenstrain formulation for classical thin plates is developed.
For isotropic materials, some important results are obtained in closed torm. Green's
function obtained in this paper coincides with the existing result, showing r* In r singularity.
As an application of the current approach, a semi-infinite plastic hinge solution is derived,
which shows the 1/r singularity neur the tip of the hinge. This result reminds us of the
dislocation solution in two-dimensional plane strain elasticity, which also has 1/r singular
behavior near the center of the dislocation.

The last problem considered in the present paper is the elliptic inclusion with uniform
eigenstrain, which we call the Eshelby-type problem (1957). A uniform distribution of
general stress M,; and general strain w,, inside the elliptic inclusion is obtained, which is
the sume as the Eshelby solution for the ellipsoidal inclusion in three-dimensional elasticity.
The simplicity of this remarkable result allows us to employ the equivalent inclusion method,
so that an elliptic inhomogencity which has different material properties from the matrix
can be made cquivalent to an clliptic inclusion with appropriate eigenstrain, and can
therefore be solved readily. Tt is expected that the current approach will be an euasier way
to solve some problems, such as the effective elastic modulus and failure mechanism of
plates with microstructures.

2. EIGENSTRAIN FORMULATION IN PLATE THEORY

2.1, Classical plate theory
With the coordinate system shown in Fig. 1, the mathematical formulation for the
three-dimensional clasticity is given as:
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Fig. 1. Counfiguration of a thin plate.

0, =0 (n
G = CiasEr ()
ekt = Wit +2ux) 3
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Ciputtin;, =0 {4)

where 4,/ &k and =1, 2 and 3, and the Greek letters used in the following are restricted
to I and 2 only.

Elastic thin plate theory is a two-dimensional approximation of the exact theory of
three-dimensional elasticity. The approximation was made based on the so-called Kirchhoff
assumption :

o= o= WL, Uy = WX, X)), (5)

Substituting this displacement into Hooke's law, egn (2}, in-plane stresses are expressed in
terms of lincar functions of xy:

aili = Cx/f;';«{ - X3 “'.;';1 }' {6}

An integration along the thickness direction provides stress resultants:

2
A’[,ﬂ = J X308, d.\'j
3

—i2
'S
= - E CX}}',‘}%“‘J‘}E (7“}
and
i 2
Q= f 03y dvs. (7b}
~f3

Equilibrium equations are then rewritten in terms of these resultants as:

My =Q, (8a)
Qex = gqlx1.X2) (8b)

where ¢ is the lateral force acting in the v, direction. When the upper and lower surfaces
are traction free. one will have a homogeneous equation:
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Caﬂ:'uw-iﬁz'u = 0. (9)
The homogeneous solution of this equation may be assumed in the form of:

H'(x|.x:) = F(:). =X, +px2 (lo)
and
W, = (élx +p62:)Fl(:)

where J,, is the Kronecker delta and F’() = dF/dz. Substituting these formulae into (9)
leads to

P Ca2aa+4p*Ca201 +2P7(Cr12:+ C1212) +4pC 1224+ Cryiy = 0. (rn

It has been proved that:

pPy=pP. Ps=p2 (12)

where the bar stands for complex conjugate.
Then a general solution can be expressed as:

w(x, x;) = Re (w'(z))+wi(zy)), (13a)
where
2y =Xx;+pix; and  zp; = x4 pax,.
When the roots are double root, i.¢. p, = p,, the solution is:
w(x,. X:) = Re(w'(z))+3,wi(z)). (13b)
Equation (13) was obtained by Lekhnitskii (1961) for an elastic thin plate.

2.2. Eigenstrain formulation
With the formulation given in the previous section, we write the total strain as:

B:/I = ezﬂ +5:‘/! (I4)

where £, is elastic strain which follows Hooke's law, and & is the so-called eigenstrain (see
Mura, 1982). From (5) and (6), one has:

ax/l = Cxll‘;u( _’YJ“..’,’}I —6',";1)' (15)
Then the equilibrium equation without lateral loading in the x; direction is:

C:/f'm W.xli';u = - C:ﬁ';uk',?u..lﬂ (l6)

where

12 h2
/\':ﬂ = ‘/"‘j .YJS:I] d.\').
1 —hi2

Notice that only the antisymmetric part of the eigenstrain with respect to the middle plane
(x; = 0) contributes to the plate bending problem. The symmetric part corresponds to the
in-plane deformation which is called the plane stress problem.

Assuming that k%, is given by the Fourier integral form,
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A*(x,.xy) = J‘J K2(3,. 3 exp (id,x,) dE, dEs
and

w(x,.x;) = ‘(J‘ wW(G 1. $2)exp (iG,x,) dS, d&..

By using (16). we can obtain:

-k T X
) Cxll;';:[;'u Sawf

ﬁ-(élv‘:l) = - . =
Cxﬂ;’u gz illg;- g/l
Furthermore :
~ Copk®
i, & .
wx,,x;) =Jf el exp (id,x,) A3 dE;
T Cx/{ uS!S/l§ Su
where

| .
AT""[I(:I'S:.‘) = 47Z:J‘J' kS (xp xa)exp (=ig,v,) dy, dy,.

A general solution is then obtained as:

I “ Cappkh (¥, X2)E, .
w(xy,xy) = 4;J f f J o X200 ey (12 (e, — 1)) A€, €, dixy i

C:/!yy &a cllé‘,'cu

Green's function may be defined from the above equation as

G(x, =X} xs—x)) = ——” e"p(f;‘éﬁé ; D e de..

Therefore,

wix,, x,) = —JJ Cappub (X, X5) G Lp(x) — X, X2 — X5) dix) dxs.

For isotropic materials,

2

Clﬂ‘,'lléié é (/ + ’.u)( f g)‘

where 4 and u are the Lamé constants.

(17a)

(17b)

(18)

(19)

(20

@

(22)

(23)

With the integrals given in the Appendix, Green's function for isotropic plates is

obtained in closed form as:

l 2 PENE
G(x,—x},x;—x3) = 1670 +7l )((\1 —=X1) 4+ (X~ x3)7)

x (log ((v) = x4+ (x2 = x3) ") = Co)

where C is an arbitrary constant.

(24)
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With the following expression for isotropic materials,
CapuCalpkd = A5, ChMs 4+ 2u(CThY + Gkt + (kT +Kk%)E,8))

and again the integrals given in the Appendix, eqn (21) becomes:

w(xy. x;) =

m L [(Hu)k,‘, log ((x; —x})" +(x;—x%)7)

2u

EEra el

+

+h3 (= x2) 4 (kT + k1) (x, —-‘f'l)(-‘:—x'z))] dx} dx; (25)

where Q is the domain with non-zero eigenstrain. Equation (25) can also be reached by
using (23) and (24) directly.

3. SOME APPLICATIONS OF THE EIGENSTRAIN FORMULATION

In this section, two important examples are discussed based on the eigenstrain
formulation.

3.1, A semi-infinite plastic hinge
Consider a plate with a semi-infinite plastic hinge as shown in Fig. 2. The jump
conditions for the plastic hinge are:

] =0, [w,]=0H(-x,)., at x,=0 (26)

where 0 is the jump of rotation across the hinge, and H(x) is the Heaviside function.
The cigenstrain can be written as:

0
k% = 2"”("-‘:)5(-“:)- 27

A%

V X4

hinge

A +—

A-A Plane:

—

Fig. 2. A semi-infinitc plastic hinge.
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Fig. 3. An elliptic inclusion with uniform eigenstrain,

Here §(x,} is the Dirac delta function. With Green's function (24). one can obtain

du Ce
w{x,. v, = - H{—x)o{x\}) —

i+ ) ), (¥, —x})7 + (v =)

dx} dxs (28)

and the following results can then be reached :

W= ;()l»lu—m T (29a)
: 2n(r+210) (xj+x
W ogq == »Qlﬁ - (29b)
T 2n(A+2u
0 X {xi—x3
Wy = : wilxi—) (29¢)

2n(A4+20) (xi+xnT

The corresponding stress ficld can be readily obtained by putting the above strain field
into eqn (6). An interesting feature of the solution is that the gencral strain w,, and stress
M, expressions have 1/r singularity, which is just like the behavior of a straight dislocation
in the plane strain casc. The results given above could be useful for the plastic limit analysis
of thin plates.

3.2, Elliptic inclusion with uniform ¢igenstrain

Eshelby’s solution (1957) of an cllipsoidal inclusion in an infinite elastic medium is
thought of as a corner stone of micromechanics. The formulation in this scction is an
extension of the Eshelby solution to thin plates under bending. Figure 3 shows an elliptic
inclusion with uniform eigenstrain sitting in an infinite plate. The general stress and strain
in the plate theory are M, and w ;. respectively. We expect them to be uniform inside the
inclusion, as in the Eshelby solution.

The domain of the inclusion, €. is defined as:

)
X7

-

[T PRI
—

+

~
=

y
ai

We start from eqn (25). By taking derivatives of w with respect to x,. and using a polar
coordinate system with origin at (x,, x,) (sec Fig. 4), the following expression is reached :

X2
1
a unit circle
'
\ X
l oy
o A a, X,
Q

Fig. 4. lustrution of the integration technigue.
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21,8,,+21,0,
w, = RAJ‘,[ ((A+p)k;,——'—l‘1—;———2—'£
)

+ 2 0, QU138 ~ 2305 + G365, ~ 21,035 )

+ (kL + ) =10, + (lf—lzlf)é‘p))) dxidx; (30)

where

l - + Bl ’ ’
A=, P =(x,—x)+(x;=x%), rly=x1—x, rl,=x3—x;
47[(/..+2[l) ( I l) ( 2 ) 1 1 1

and 1 is the unit vector along the x — x’ direction. With d.x| dx’, = r dr d#, the integrand of
(30) becomes independent of r, i.e.

N

LU P n
W, = 27:AJ f F,(l,,1,)dr d0 = ZnAJ. E, (1. 1)r(l,. 1) dO 31
0 0

1]
where

F,,(Il.lz) = (;.‘*"/l)k:x(ll(sll,‘i'lz(s‘_v,,)
+zll(kfl(lxlg‘slp"llzlz‘szp)+k?2(lfl:5:p“'l|1§‘sl,.)

+ R+ R =01, + (1= 117)8,,)/2).  (32)

When point x is located inside the inclusion Q, the integral in eqn (31) is explicitly
performed. From the elliptic cquation which represents the boundary of Q, r(/,,1,) can be
found as follows:

r(y . 1y) = —f/yt\/fz/y:ﬂ’/y

where
I1\'| 11.\72
f_ 3 3"
ay I
iz
g= =+ 3
al a3
xioox;3
e=l——=—-3
a; a3

When r(/,,1,) is inserted into eqn (31), the term ./ f*/g* + ¢/g can be omitted, since it is an
even function of I, while F,(/,,/,) is odd. Thus,

W, = -sz. Folly L exeilil) 4 (33)
a

g/, 1)

Rewriting fas:

S = dmXn,

eqn (33) becomes::



370 S. Qin et dl

LR

w, = —2ndx, Fil 1
{

e

Ao du 1
4 AL 3]
i, 1) -

where

ay=1vai. Ao=1.u

Now we can take another derivative of w, with respect to v, to get the general strain

=i F,
W, = —37!,4j T, (35
i

g

-
t

Equation (35) is the desired results which shows that the general strains w ,, inside the
inclusion are constant. Consequently, the moment components. M ;. defined in (7a) are
also constants in Q.

The integrals in the above equation are carried out as follows:

L l ( Kk + ket
Wy = - "‘ PR TR LTI B G 3
h Jnp(t=v) ) caaitiai+13ai) \1=2p 71T

+ 2l LAY Ky R —f;fz}))dﬂ {36u)

f—2v "¢ l i
= Vgt g A +EE,
e 2ru(l - v)J cra@iilai +13/a3) (! LRSS

+2u!fl_vu/\!‘_'MHI)MT;(/:»-~/_:/,n)dn (36b)

/

I -2y "l n=n
W= T ke do (36¢)
o e =v) ) wvastyjas +13/az) )
— [ s
W= T \ ~~~{«‘~r;i~‘{:~v; 2uk%, do (36d)
i HA Yy
) 2rpl =) | ocai{filay +15]a3)

where v is Poisson’s ratio.
For the convenience of turther application discussed in the next section, we now relate
W, with eigenstrain by a tensor S,

W.I/‘ = Sx[f;‘uk,*u (’%7)
where
S t Ig ' ”"2" il:
T T on(l—v) @} m(l=v) o
I .{3 I -2y !;:
S =— "y -

2}:{;!‘ -v) dg T a(l=v) ‘aj:

| 1: 1"‘2\' Il‘
n(l—v) ai = a(l=v) u3
I:2~1\1

as

Iy
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s _ 1=2v I~
T U (1 -v) at

The rest of the components are zero. The / values used in the above expressions are::

2 13 naia?
L=| Zdo=—"2_
J-n2d ay(a,+a;)
Pred o
I - h nalal
T Jer2d a(a, +a:)
P s - +
R naja,(2a} +a3—3aia.)
Iy = —df = I_ 0
Jon2 g 2(az—ay)
I d b h
SR b+ na,a3i(2a3 +a) —3aia,)
I = —df = T _ (i
J-x2 2(a| -aZ)
AR HE: nata}
I:= L
J-rn2 @ 2(a,+a;)

In the case of a circular inclusion, i.e. a, = a, = a, the integrals are reduced to:

naT
[l = ’3 = ",’”*
/ / _‘3mr
1" =4 8
na’
fs= ~om,
S

The anisotropic inclusion solution is expected to have the sume features as that of the
isotropic solution discussed above. Further work will be devoted to this subject.

4. EQUIVALENT INCLUSION METHOD

The solution obtained in the previous section is very useful for inhomogeneities which
have different elastic moduli from the matrix. We can find an inclusion of the same shape
with appropriate eigenstrains which will cause exactly the same stress and strain fields as
that of the inhomogeneity. This procedure is called the equivalent inclusion method, which
has been extensively developed by Mura (1982) in three-dimensional problems based upon
the Eshelby solution (1957).

Consider an infinitely extended plate with elastic moduli C,4., containing an clliptic
domain with the elastic moduli CJ,, (see Fig. 3). Let us denote the far field moment as
My and the corresponding strain wiz. The disturbance caused by the inhomogeneity is
M, and w4 respectively. Considering a point inside the inhomogencity, we have two
expressions for moments in terms of different moduli:

k)

h
Mg,;+M,,, = = -

1 2 Cipou (w.?'u +wou—k3) (38)

or

h 3
My+M, =~ 3 Clh (vl +w,,). (39)

SAS 28:3-H
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For elliptic inclusion, recall that
Wap = Supkd {371
We then have the following expression:
CapruWpu+ Skt — k) = Clu (W, + Sppik ). (40)

This equation determines the eigenstrains of the equivalent inclusion.

5. DISCUSSION AND FURTHER WORK

The formulation in the previous sections extends Eshelby's solution to the thin plate
theory. It is known that the plate theory is an approximated formulation based on three-
dimensional elasticity. The so-called effective shear force concept is needed to make this
Boundary Value Problem a well defined one. According to the assumption of the thin plate,
the stress components a ., are higher order quantities than in-plane components o,4. In the
previous derivation only M,, showed the property of Eshelby-type solution, while @, was
not involved in the calculation. This will not be the case when energies are considered where
M g and Q,w, are of the same order.

Further work can be done along these lines. For example, a crack in a thin plate under
bending can be examined by using the present method. It is the authors’ opinion that the
eigenstrain approach could be an easicr way to study certain mechanical behavior of thin
plates with microstructures.
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APPENDIX

The integrals used to derive Green's function are obtained from Fouricer Imegrals for Practical Applications
by Campbell und Foster (1948) :

J‘ ‘;’.‘.’.’.‘(L(J"' i;:x}n dé, 4, = —nlog(xi +x3) (Al)
o site:
’ i“"..‘l“’('{“__.“t‘:‘)} 4, dey = = Bl (A2)
. §i+33)” ¥i+x3
© Eexp (¢ xi+82x2)) . . I VPR SN T ﬂ‘} A3
J' . GEYAY d§, dé, = 5 log (xvi +x3) el (A3)



